Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владияосток (423)249-28-31 Владияавказ (8672)28-90-48 Владиямр (4922) 49-43-18 Волгоград (844)278-03-48 Волгоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Ижевск (3412)26-03-58 Иваново (4932)77-34-06 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калининград (4012)72-03-81 Калининград (4012)72-03-81 Карово (3842)65-04-62 Киров (3822)68-02-04 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Краснодар (852)50-90-47 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новбузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Ноябрьск (3496)41-32-12 Омск (3812)21-46-40 Орсл (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Россия (495)268-04-70

https://supelco.nt-rt.ru || suz@nt-rt.ru

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Саранак (8342)22-96-24 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сыктывкар (8212)25-95-17 Сургут (3462)77-98-35 Тамбов (4752)50-40-97

Казахстан (772)734-952-31

Тверь (4822)63-31-35 Тольяти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)25-97-51 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Яроспавль (4852)69-52-93

GC колонки

Ensuring Optimal Method Performance

Supelco[®] GC Capillary Columns

There from the beginning - Manufacturing reliable and reproducible capillary columns for over 50 years

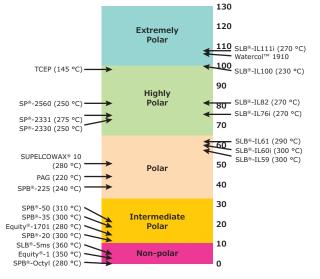
How to Choose a Capillary Column

An optimized chromatographic separation begins with the column. The selection of the proper capillary column for any application should be based on four significant factors: stationary phase, column I.D., film thickness, and column length. The practical effects of these factors on the performance of the column are discussed briefly in this section, in order of importance. Note that this information is general. Specific situations may warrant exceptions to these guidelines.

Phase Polarity

This is the single most important characteristic in selecting a capillary column because it dictates selectivity, or the ability of the column to separate sample components. Phase selection is based on the general chemical principle that "likes dissolves like." A non-polar column is best for the analyses of nonpolar compounds. Polar columns most effectively separate polar compounds.

Non-polar compounds are generally composed only of carbon and hydrogen atoms and contain carbon-carbon single bonds. Non-polar capillary columns separate these compounds very well. Interactions between non-polar compounds and a non-polar phase are dispersive, meaning that they are governed by Van der Waals forces. These are intermolecular attractions that increase with the size of the compound. Thus, larger compounds with higher boiling points have longer retention. Elution order generally follows the boiling points of the compounds.


Polar compounds are composed primarily of carbon and hydrogen atoms, but also contain one or more atoms of bromine, chlorine, fluorine, nitrogen, oxygen, phosphorus, or sulfur. Alcohols, amines, carboxylic acids, diols, esters, ethers, ketones, and thiols are typical polar compounds analyzed by capillary GC. Intermediate polar or polar capillary columns separate these compounds well. In addition to dispersive interactions, interactions between polar compounds and the phase include dipole, n-n, and/or acid-base interactions. Separations are determined by differences in the overall effects of these interactions.

Polarizable compounds are composed of carbon and hydrogen, but contain one or more double or triple carbon-carbon bond. These compounds include alkenes, alkynes, and aromatic (benzene-ring containing) hydrocarbons. Highly polar capillary columns are generally used to separate these compounds.

Phase Polarity Based on Compound Polarity

Compound Polarity	Compound Examples	Recommended Phases
Non-Polar		
C and H atoms only, C-C bonds	alkanes	Equity [®] , Omegawax [®] , Petrocol [®] , SPB [®] , SLB [®] , SUPELCOWAX [®] and VOCOL [®]
Polar		
Primarily C and H atoms, also contain Br, Cl, F, N, O, P and/or S	alcohols, amines, carboxylic acids, diols, esters, ethers, ketones, thiols	SPB®-624, OVI-G43, VOCOL®, SPB®- 20, Equity®-1701, SPB®-35 SPB®-50, SPB®-225, PAG, Omegawax®, SPB®-1000, SLB®-IL60i, Nukol™, SUPELCOWAX® 10
Polarizable		
C and H atoms only, C=C or C=C bonds	alkenes, alkynes, aromatic hydrocarbons	SP®-2330, SP®-2331, SP®-2380, SP®-2560, SP®-2340, TCEP, SLB®-IL111i

Traditional Phases: GC Column Polarity Scale

Step 1 – Stationary Phase

Choosing a stationary phase is the most important step in selecting a column. A stationary phase is the film coated on the inner wall of a capillary column, and should be selected based on the application. The differences in the chemical and physical properties of injected organic compounds and their interactions with the stationary phase are the basis of the separation process. When the strength of the analyte-phase interactions differs significantly for two compounds, one is retained longer than the other, what is described as selectivity. How long they are retained in the column (retention time) is a measure of these analyte-phase interactions.

Changing the chemical features of the stationary phase alters its selectivity. Two compounds that co-elute (do not separate) on a particular stationary phase might separate on another phase of a different chemistry, if the difference in the analyte-phase interactions is significant. This is the reason for providing a wide variety of capillary column phases/selectivities. Each phase provides a specific combination of interactions for each chemical class of analytes.

Established Applications: Gas chromatography, first established in the 1950s, is a mature analytical technique with many established applications. Therefore, it is probable that literature, such as written methodology or journals, exists stating which stationary phases have successfully been used for a given application. Additionally, column manufacturers routinely publish phase selection charts, such as those on pages 8–16. Charts like these are conveniently arranged by industry to simplify the process of selecting the proper phase. First, find the chart that matches your industry or area of interest. Then, locate the application within that chart to identify a recommended column phase.

New Applications: For new applications, there is often no existing reference to provide guidance. In these 'method development' instances, one must have some knowledge of the chemistry of the compounds to be analyzed.

Bonded/Non-Bonded Phases

Bonded phases are immobilized/chemically bonded (crosslinked) within the tubing, while non-bonded phases are simply coated on the wall. Generally a bonded phase is preferred, because it exhibits less bleed during use, can be used at higher temperatures, and, when necessary, can be rinsed with solvents to remove accumulated non-volatile materials. When a bonded phase is not available, such as for the highly polar phases, look for a stabilized phase. These phases are not as permanent as bonded phases (cannot be rinsed), but have greater thermal stability than non-bonded phases. For some applications, the only choice is a nonbonded phase.

Step 2 – Column I.D.

The current range of commercially available capillary column internal diameters enables the balancing of two factors: efficiency (number of theoretical plates) and sample capacity (amount of any one sample component that can be applied to the column without causing the desired sharp peak to overload). Optimizing one of these factors requires a sacrifice from the other. The ideal I.D. for a given application is dependent on the analytical needs.

The effects of column I.D. on efficiency and sample capacity are represented in Table 1. As shown, 0.25 mm I.D. columns provide adequate plates/meter for most applications while allowing acceptable sample capacity. Because of this compromise between efficiency and sample capacity, 0.25 mm is the most popular I.D. for capillary GC columns. Columns with a smaller or larger I.D. allow the user to optimize either efficiency or sample capacity, based on the requirements of their application.

High Efficiency: Observed chromatographically as narrow and well-resolved peaks. The efficiency of a capillary column, measured in plates (N) or plates per meter (N/m), increases as the I.D. of the column decreases. This is one of the basic principles behind Fast GC. If the sample to be analyzed contains many analytes, or has analytes that elute closely together, the most narrow I.D. capillary column that is practical should be selected. Note that very narrow bore columns, such as 0.10 or 0.18 mm I.D., may require specialized equipment, such as a GC with a pressure regulator that allows a higher column head pressure and a detector that can resolve the resulting very narrow peaks.

Sample Capacity: Increases as column I.D. increases. Wide bore columns can accommodate a larger mass of each analyte in a sample than narrow bore capillary columns. Exceeding the sample capacity of a column will result in skewed peaks and decreased resolution. Therefore, if the samples to be analyzed contain compounds at high concentrations, or represent a wide range of concentrations, then a wide bore column should be considered. If the proper I.D. is chosen, the column should allow the system to provide sufficient sensitivity for the minor components without being overloaded with the major components. The analyst must decide if the loss in efficiency resulting from using a wide bore column is problematic for their application. Note that the nature of the sample components and the polarity of the phase will affect sample capacity. Non-polar phases have higher capacities for non-polar analytes, and polar phases have higher capacities for polar analytes.

Table 1. Effects of Column I.D.

Internal Diameter (mm)	Efficiency: Plates/Meter (N/m)	Efficiency: Total Plates (N)	Capacity Each Analyte (ng)
0.53	1,300	39,000	1000-2000
0.32	2,300	69,000	400-500
0.25	2,925	87,750	50-100
0.20	3,650	109,500	<50
0.18	4,050	121,500	<50
0.10	7,300	219,000	<10

Theoretical values for 30 m long columns, calculated with k = 6.00 and 85% coating efficienc. The equilibrium constant, K, is termed the partition coefficient; defined as the molar concentration of analyte in the stationary phase divided by the molar concentration of the analyte in the mobile phase.

Step 3 – Film Thickness

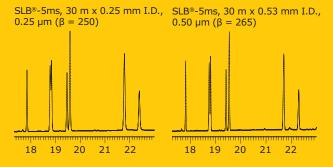
Most 0.25 mm I.D. columns have a 0.25 or 0.50 μm film thickness. Depending on the application, the optimal film thickness may be different.

Decreasing Film Thickness: The benefits are sharper peaks (which may increase resolution) and reduced column bleed; both resulting in increased signal-to-noise ratios. Additionally, the column's maximum operating temperature will be increased. The drawbacks are increased analyte interaction with the tubing wall, and decreased analyte capacity. Decreasing film thickness also allows analytes to elute with shorter retention times and at lower temperatures, which may be desirable or undesirable, depending on the application. Thinner film columns should be used for analytes with high (>300 °C) boiling points (such as pesticides, PCBs, FAMEs, phthalate esters, and other semivolatile compounds), or for trace analyses.

Increasing Film Thickness: The benefits are reduced analyte-tubing interaction and increased sample capacity. The drawbacks are increased peak widths (which may reduce resolution), increased column bleed, and a reduced maximum operating temperature for the column. Increasing film thickness also leads to increased analyte retention (may also increase resolution, specifically for compounds with low k) and increased elution temperature. Depending on the application, these last effects may be either desirable or undesirable. Thicker film columns are best suited for analytes with low boiling points such as volatile organic compounds and gases. These types of analytes are retained longer on the thicker film, which may eliminate the need for subambient oven conditions. A thicker film will also increase capacity, thus making the column more compatible for higher concentration samples than a thinner film column.

Phase Ratio (β)

Effects of phase film thickness are interdependent with column I.D. The phase ratio, beta (β), expresses the ratio of the gas volume and the stationary phase volume in a column:


0 _	column radius (µm)
β =	2 x film thickness (µm)

In contrast to relative terms ("thick film" and "thin film"), β values establish a distinct ranking for columns. As a general rule, select columns by β values as follows:

β Value	Uses
<100	Highly volatile, low molecular weight compounds
100-400	General purpose analyses Wide range of compounds
>400	High molecular weight compounds Trace analyses

 β values are also useful when changing column I.D. and film thickness combinations for a particular analysis, because columns with the same phase ratio will provide very similar retention times and elution order under the same analytical conditions.

Columns With Similar β Values

Step 4 – Column Length

Generally a 30 m column provides the best balance of resolution, analysis time, and required column head pressure. Data is shown in Table 2. Specific applications may warrant a different column length.

Longer Columns: provide greater resolution, but increase back pressure. It should be stressed that doubling column length will NOT double resolution (resolution only increases according to the square root of the column length). If resolution between a critical pair is less than 1, doubling column length will not bring it to baseline (resolution value of at least 1.5). Increasing column length to increase resolution should be considered as a last resort. A more effective approach to increasing resolution is to reduce column I.D.

Shorter Columns: best used when great resolution is not required, such as for screening purposes or for simple samples whose components are dissimilar in chemical nature. However, if column I.D. is decreased along with length, resolution can be maintained, or in some cases, actually increased.

Table 2. Effects of Column Length

Column Length (m)	Inlet Pressure (psi)	Peak 1 Retention (min)	Peak 1/2 Resolution (R)	Efficiency: Total Plates (N)
15	5.9	8.33	0.8	43,875
30	12.0	16.68	1.2	87,750
60	24.9	33.37	1.7	175,500

Theoretical values for 0.25 mm I.D. columns with 85% coating efficiency, 145 °C isothermal analyses, helium at 21 cm/sec, k (peak 1) = 6.00

Fused Silica Tubing Inner/Outer Diameters

Tubing I.D.	Tubing I.D. Range	Tubing O.D. Range
0.10 mm ^	0.094 - 0.106 mm	0.349 – 0.369 mm
0.10 mm *	0.094 - 0.106 mm	0.290 – 0.310 mm
0.18 mm ^	0.174 - 0.186 mm	0.349 – 0.369 mm
0.18 mm *	0.174 - 0.186 mm	0.330 – 0.350 mm
0.20 mm *	0.194 - 0.206 mm	0.349 – 0.370 mm
0.25 mm *	0.244 - 0.256 mm	0.349 – 0.370 mm
0.32 mm *	0.314 - 0.326 mm	0.425 – 0.450 mm
0.53 mm *	0.526 - 0.546 mm	0.640 – 0.680 mm
0.75 mm •	0.737 – 0.758 mm	0.875 – 0.925 mm

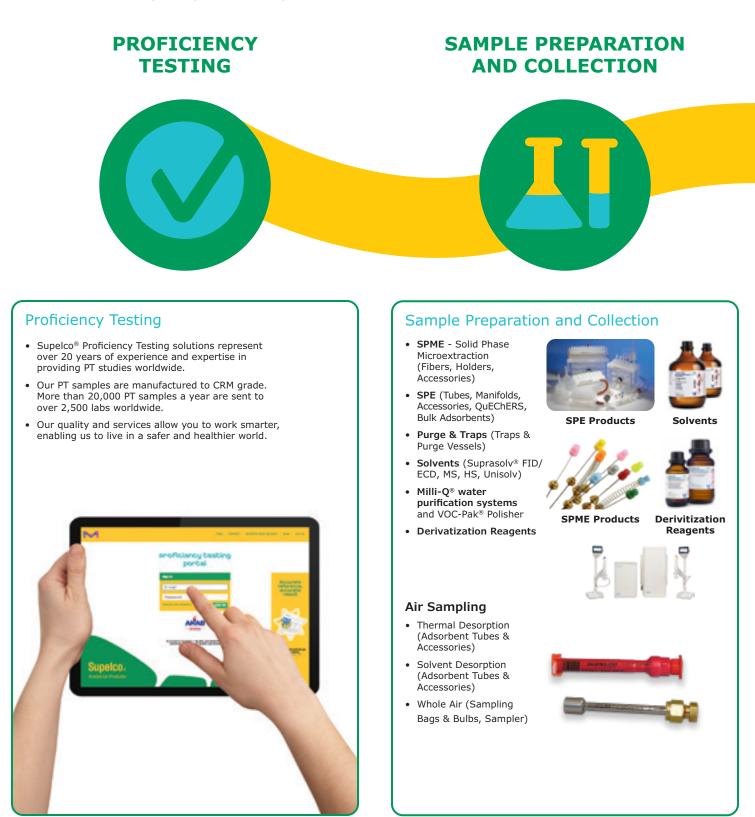
 Analytical columns with non-polar or intermediate polarity stationary phases.

 Analytical columns with polar stationary phases. Guard columns regardless of deactivation.

 Analytical columns regardless of polarity. Guard columns regardless of deactivation.

Supelco[®] Intuvo Columns

Supelco[®] GC columns are now offered for use with the Agilent[®] Intuvo GC System. This system allows for the elimination of unplanned downtime, timeintensive tasks, and user technical limitations. Choose from a full portfolio of cost-effective GC columns including our workhorse SLB[®]-5ms, our unique selectivity ionic liquid columns, and even specialty columns like our β-DEX[™] chiral columns.


Intuvo Compatible GC Columns:

- Install in less than 1 minute click-and-run connections
- Require no maintenance or trimming
- Use leak-free connection
- Use high speed or high throughput GC with fast heating and cool-down time
- Chromatograms stay the same for simple method translation

Gas Chromatography Workflow Tools

We provide a comprehensive range of high quality tools for each step of the GC workflow ensuring accuracy, precision and consistency of your analysis.

GC ANALYSIS

DETECTION AND CALIBRATION

GC Analysis

- GC Columns for GC, GC/MS, Fast GC, GCxGC
- General Purpose Columns (e.g. SLB®-1ms, SLB®-5ms, SLB®-35ms, Equity®-1701, SUPELCOWAX®, Nukol™/FFAP)
- Special Application Columns (e.g. FAME, PAH, PCB, Dioxins, VOC, PLOT, Chiral)
- Ionic Liquid Columns (SLB®-IL i-Series, Watercol[™])
- Packed Columns
 (SS & Glass)
- Intuvo Columns
 (SUPELCOWAX[®] 10, SPB[®]-624, SLB[®]-5ms, SLB[®]-PAH-MS, SLB[®]-IL60, Equity[®]-1701, β-DEX[™] 120, Watercol[™] 1910)

Accessories

- Liners & Septa
- Fittings, Ferrules & Column Connectors
- Flow Measurement
- Vials & Syringes
- Gas Management & Purification
 - Gas Generators
 - Gas Purifiers
 - Plumbing (Valves, Fittings & Tubing)

GC Columns

(Packed)

GC Columns (Capillary)

Liner

Detection and Calibration

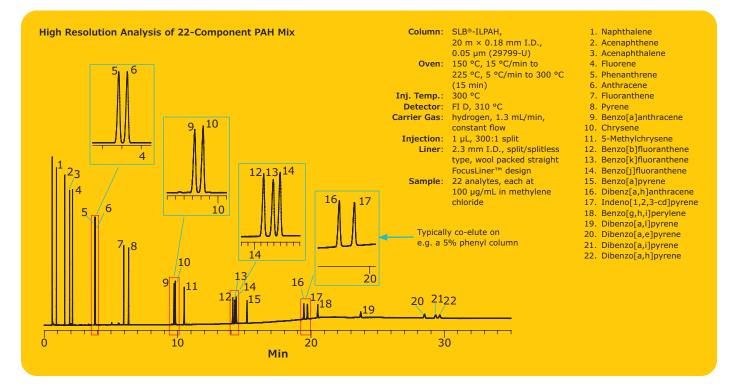
- Reference Standards & Certified Reference Materials (CRMs)
- Neats & Solutions (for almost every application area)
- Matrix Standards
- Pharmacopoeia & Metrological Institute Standards

Reference Standards & Certified Reference Materials

Column Selection by Industry

We have developed the most extensive line of special purpose columns designed for industry specific applications. These columns are manufactured to deliver high resolution, great analyte response, low bleed, and long column life; allowing you to achieve the analytical performance you require.

The stationary phase dictates the minimum and maximum temperatures at which a column can be used. It is therefore critical to ensure the selected stationary phase can withstand the temperature requirements of the GC method.


Environmental Industry

	SPB®-Octyl	SLB®-5ms**	Equity®-5**	SPB®-624**	VOCOL®**	Equity®-1701**	SPB®-608	Sup-Herb™	SPB®-35	SPB®-50	SPB®-225	SPB®-1000	SLB®-IL59	SLB®-IL60i**	SLB®-IL82	SP®-2331**	SLB®-IL111i	Chiral *	SLB®-ILPAH**	SLB®-PAHms**
Volatiles by GC-MS				٠	•															
Volatiles by GC				٠	•															
Semivolatiles by GC-MS		٠																		
Semivolatiles by GC**		٠	٠			٠	٠	٠	٠	٠								•		
Fuels (GRO, DRO, TPH)		٠	•	•	٠															
Dioxins by GC-HRMS		٠									•					٠				
PCBs by GC-HRMS	•	٠											٠		٠		•			
PBDEs by GC-MS		•																		
PAHs by GC or GC-MS		٠																	•	٠
Oil Spill Dispersants												•								
Odor Compounds (Geosmin, 2-MIB)		٠																		

* See "by Application" section

** Indicated columns are available in Intuvo format

*** Includes: organochlorine pesticides, PCBs as Aroclors, herbicides, organophosphorous pesticides, nitrosamines, phenols, phthalate esters, haloacetic acids, disinfection by-products and solvents, and PAHs.

Petroleum Industry

	MET-SimDis	Alumina KCI PLOT	Silica PLOT	Petrocol® DH Octyl	Petrocol® DH 50.2	Petrocol [®] DH	Petrocol [®] DH 150	Petrocol [®] 2887	Petrocol® EX2887	SPB®-1 SULFUR	Equity®-1**	SLB®-1ms**	SLB®-5ms**	HT-5 (aluminum clad)	SUPELCOWAX [®] 10	SLB®-IL59	SLB®-IL60i**	SLB®-IL111i	Supel-Q™ PLOT	GPA Packed Columns	SLB®-ILD3606	Watercol™ 1910
Detailed Hydrocarbon Analysis (DHA)				•	•	•	•															
Simulated Distillation (Sim Dis)	•							•	٠					•								
Fuels by Pattern Recognition											٠		•									
Aromatics in Fuel																		•			•	
Oxygenates in Fuel				•	•	•	٠														•	
Sulfur Compounds in Fuel										•						•	•		•			
Impurities in Fuel							٠								•				•			
Natural Gas, Natural Gas Liquids											•									•		
Hopanes (Triterpenes)													•									
ASTM D3606/Benzenes and Aromatics in Fuel																					•	
ASTM D2887	•																					
Extended ASTM D2877 Methods	•																					
ppm levels of C1-C5 hydrocarbons and fluorinated compounds		•																				
Moisture Analysis in Fuel																						•
C1-C4 isomers in presence of water			•																			

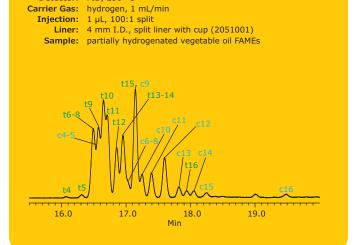
** Indicated columns are available in Intuvo format

Biofuel Industry

	SPB®-Biodiesel	Petrocol® DH 150	Equity®-1**	SLB®-1ms**	MET-Biodiesel	Omegawax®**	SLB®-IL60i**	SLB®-IL111i
Bioethanol: Ethanol Content		•						
Biodiesel: FAME Profile						•	•	•
Biodiesel: Glycerin Impurity					•			
Biodiesel: Methanol Impurity			•	•				
Free and total glycerin	٠				•			

Chemical Industry

	Petrocol® DH Octyl	Petrocol® DH 50.2	Petrocol [®] DH	Petrocol® DH 150	SPB®-1 SULFUR	Equity®-1**	SLB®-1ms**	SLB®-5ms**	PTA-5	SPB®-1000	Nukol™	Carbowax [®] Amine	SUPELCOWAX [®] 10**	SLB®-IL59	SLB®-IL60i**	SP®-2380**	TCEP	SLB®-IL100	SLB®-IL111i	Chiral*	Carboxen®-1010 PLOT	Carboxen®-1006 PLOT	Supel-Q™ PLOT	Alumina sulfate PLOT	Alumina KCI PLOT	Mol Sieve 5A PLOT	Bentone [®] 34/DNDP SCOT	TCEP SCOT	BMEA SCOT	Squalane SCOT	Fluorocol™ and Krytox® Packed Columns	Micropacked Columns	Watercol™
Solvents								•					•		•																		
C1-C5 Alkanes, Alkenes, Alkynes																								•	•								
Impurities in Ethylene																								•									
Impurities in Propylene																								•									
Aromatics													•	•	•				•								•						
Impurities in Toluene																	•	•										•					
Xylene Isomers													•	•	•												•						
Mineral Spirits																	•											•					
Chlorinated Solvents								•					•		•																		
Pesticides								•												•													
Fluorocarbons																							•		•						•		
Alcohols						•	•	•					•		•					•													
Glycol Ethers (Cellosolves), Diols, Glycols										•	•				•					•													
Formalin																						•											
Ketones						•	•	•					•		•					•													
Carboxylic Acids as Methyl Esters																•			•	•													
Dicarboxylic Acids as Dimethyl Esters																•			•														
Tall Oil Fatty Acid as Methyl Esters																•			•														
Esters and Ethers										•	•				•					•													
Impurities in MTBE	•	•	•	•																													
Terpenes						•	•	•						•	•				•	•													
Amines									•			•		•	•																		
Aromatic Amines (Anilines)									•			•		•	•																		
Sulfur Compounds					•									•	•								•										
Dissolved Gas Analysis (DGA)																					•												
Gases, Light Hydrocarbons																					•	•	•	•	•	•							
Process Analyzers																											•	•	•	•		•	
Moisture Analysis																																	•


* See "by Application" section

Agriculture Industry

	Equity®-1**	SLB®-5ms**	SAC-5	Equity®-1701**	SPB®-608	SPB®-225	SPB®-PUFA	Nukol™	SPB®-1000	Omegawax®	SUPELCOWAX [®] 10**	SLB®-IL59	SLB®-ILPAH**	SLB®-PAHms**	SLB®-IL60i**	SP®-2331**	SP®-2380	SP®-2560	SLB®-IL111i	Chiral *	Watercol™ 1910**
Edible Oils		•	٠							•		•			•		٠	•	٠		
Free Fatty Acids								•	•												
FAMEs by Boiling Point Elution	•	•	٠																		
FAMEs by Degree of Unsaturation							•			•		•			•						
Omega 3 and Omega 6 FAMEs							•			•		•			•		٠	•	٠		
cis/trans FAME Isomers															•		٠	•	•		
Pesticides		٠		٠	٠															٠	
Dioxins		•				٠										٠					
Flavors and Fragrances, Aroma	•	•									•				•				٠	•	
Moisture Analysis																					٠
PAHs													•	•							

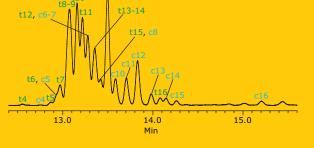
* See "by Application" section

** Indicated columns are available in Intuvo format

GC Analysis of C18:1 cis/trans FAME Isomers in Partially Hydrogenated Vegetable Oil (PHVO) on the SP[™]-2560

 Column:
 SP®-2560, 100 m x 0.25 mm I.D., 0.20 μm (24056)

 Oven:
 180 °C isothermal


 Inj. Temp.:
 250 °C

 Detector:
 FID, 250 °C

 Corrige:
 ballocare and rel (rel)

GC Analysis of C18:1 cis/trans FAME Isomers in Partially Hydrogenated Vegetable Oil (PHVO) on the SLB $^{\otimes}$ -IL111

Oven: Inj. Temp.: Detector: Carrier Gas: Injection:	SLB®-IL111, 100 m x 0.25 mm I.D., 0.20 μ m (29647-U) 168 °C isothermal 250 °C FID, 250 °C hydrogen, 1 mL/min 1 μ L, 100:1 split 4 mm I.D., split liner with cup (2051001) partially hydrogenated vegetable oil FAMEs
t12, c6-7	8-9 111 t13-14

Food and Beverage Industry

	SPB®-Octyl**	SPB®-1 SULFUR	Equity®-1**	SLB®-1ms**	SLB®-5ms**	MET-Biodiesel	SAC TM -5	SPB®-624**	VOCOL®**	SPB®-20	Equity®-1701**	SLB®-ILPAH**	SLB®-PAHms	SPB®-608	SPB®-35	SPB®-50	SPB®-225	SPB®-PUFA	SLB®-35ms**	Nukol™/SPB®-1000	Omegawax [®]	SUPELCOWAX [®] 10**	SLB®-IL59	SLB®-IL60i**	SP®-2331**	SP®-2380**	SP®-2560	SLB®-IL111ii	Chiral*	Carboxen®-1010 PLOT	Carboxen®-1006 PLOT	Supel-Q™ PLOT	Alumina sulfate PLOT	Alumina KCI PLOT	Mol Sieve 5A PLOT	Watercol TM 1910**
Sugars as Alditol Acetates								•			•																									
Free Fatty Acids																				•																_
FAMEs by Boiling Point Elution			•	•																																_
FAMEs by Degree of Unsaturation																		•			•		•	•												_
Omega 3 and Omega 6 FAMEs																		•			•		•	•												_
cis/trans FAME Isomers																										•	•	•								_
Fatty Acid Ethyl Esters (FAEEs)					•																•		•	•		•	•	•								_
Mono-, Di-, Triglycerides						•																														_
Sterols, Aliphatic Alcohols, Waxes						•	•																													_
Amino Acids					•																								•							_
Nutraceuticals, Antioxidants					•																															_
Organic Acids					•															•		•		•												_
Flavors & Fragrances, Aroma			•	•	•																	•		•					•							_
Preservatives					•																															_
Pesticide Residues					•						•			•					•										•							_
Veterinary Drug Residues					•						•			•																						_
Allergens					•																															_
Dioxins, Furans, PCBs	•				•												•								•											_
Phthalate Esters					•																															_
Bisphenol A, BADGE, BFDGE, NOGE					•																															_
Benzene								•	•														•	•				•								_
Nitrosamines					•																		•	•												_
PAHs					•							•	•	•	•								•	•												_
Acrylamide																						•														_
3-MCPD					•																															_
Disinfection By-Products and Solvents					•						•																									_
Adulterants					•																	•														_
Beverage Analysis					•					•	•				•	•				•		•		•								•				
Sulfur Compounds in Beverages		•																					•	•								•				_
Moisture Analysis																																			\neg	•

* See "by Application" section

Flavor and Fragrance Industry

	Equity∞-1**	SLB⁰-1ms**	SLB®-5ms**	SUPELCOWAX© 10**	SLB®-TL601**	Chiral*	Watercol [™] 1910**
Volatiles	•	•	٠	•	•	•	
Essential Oils	•	•	٠	•	•	•	
Moisture Analysis							•

* See "by Application" section

** Indicated columns are available in Intuvo format

Cosmetic and Personal Care/Cleaning Product Industry

	Equity®-1**	SLB®-1ms**	SLB®-5ms**	PTA-5	SPB®-1000	Nukol™**	Carbowax Amine	SUPELCOWAX [®] 10**	SLB®-IL60i**	Chiral*	Watercol™ 1910**	SLB®-IL111i
Alkalis				•			•					
Allergens			•						•			•
Coloring Compounds			•		•	•		•				
Fragrance Compounds	•	•	•					•	•	•		•
Glycols					٠	•			•			
Preservatives			•									
Solvents in Cleaning Products			•		•	•		•	•			
Surfactants: Anionic					•	•						
Surfactants: Nonionic	•	•	•									
Moisture Analysis											•	

* See "by Application" section

** Indicated columns are available in Intuvo format

Pharmaceutical Industry

	SLB®-5ms**	PTA-5	Equity®-5**	OVI-G43	Carbowax Amine	SUPELCOWAX® 10**	Chiral*	Alumina KCI PLOT	Various Packed Columns	Watercol™ 1910**
Residual Solvents			•	•		•				
Active Pharmaceutical Ingredient (API)	•	•			•		•			
Preservatives	•									
Heptafluoropropanes								•		
Pharmacopeia (USP/NF/BP/EP/JP) Methods									•	
Moisture Analysis										•

* See "by Application" section

Clinical Industry

	Equity®-1**	SLB®-5ms**	PTA-5	SAC-5	SPB®-20*∗	Equity®-1701**	SPB®-35	SPB®-35ms	SPB®-PUFA	Nukol™	SPB®-1000	Carbowax Amine	Omegawax®**	SLB®-IL59	SLB®-IL60i**	SP®-2380**	SP®-2560	SLB®-IL111i	Chiral*
Antidepressants						•													
Antiepileptics					•	•													
Antihistamines			•									•		•	•				
Bacterial Acid Methyl Esters (BAMEs)		•											•	•	•	•	•	•	
Basic Drug Screen		•	•				•	•				•		•	•				
Benzodiazepines as Acetic Anhydride Derivatives	•																		
Benzodiazepines as TBDMS Derivatives							•	٠						•	٠				
Carboxylic Acids as Methyl Esters																٠	٠	٠	•
Cold and Sinus Medications			٠									•		٠	٠				
Deprenyl (Selegiline)																			•
Estrogens		٠																	
Free Fatty Acids										•	•								
FAMEs by Boiling Point Elution	•																		
FAMEs by Degree of Unsaturation									٠				•	٠	٠				
Omega 3 and Omega 6 FAMEs									•				•	•	•				
cis/trans FAME Isomers																٠	•	٠	
NSAIDs																			•
Phenothiazines		٠																	
Psychostimulants																			•
Steroids	•	•		•															
Sympathomimetic Amines			•									•		•					
Sympathomimetic Amines as HFBA Derivatives		•																	
Sympathomimetic Amines as TFAA Derivatives		•																	

* See "by Application" section

Forensic Industry

	Equity®-1**	SLB®-5ms**	SUPELCOWAX® 10**	PTA-5	SAC-5	Equity®-5**	VOCOL®**	Equity®-1701**	SPB®-35	SPB®-35ms	SPB®-1000	Nukol™	Carbowax Amine	SLB®-IL59	SLB®-IL60i**	Chiral*
Accelerants	•	•														
Blood Alcohols	•						•									
Explosives		•	•											•		
Glycols											•	•				
Drugs of Abuse			1			I						1				
Drug Screen as TBDMS Derivatives		•							•	•						
Drug Screen as TMS Derivatives		•							•	•						
Basic Drug Screen		•		•					•	•			•	•		
Amphetamines		•							•	•						•
Antidepressants								•								
Barbiturates		•						•	•	•						
Cannabinoids as TMS Derivatives		•							•	٠						
Cocaine as TMS Derivatives		•							•	٠						
GHB as MTBSTFA Derivatives		•														
Inhalants						•	•									
Ketamines as MBTFA Derivatives		•														
LSD as TMS Derivatives		•							•	•						
MDMA (Ecstasy) as HFBPC Derivatives		•														
Opiates as TMS Derivatives		•							•	•						
Phencyclidine (PCP)		•														
Psychostimulants																•
Steroids					•	•										
Tryptamines		•														

* See "by Application" section

** Indicated columns are available in Intuvo format

Life Science Industry

* See "by Application" section

Industrial Hygiene Industry

	Equity®-1**	SLB®-5ms**	vocol®	SUPELCOWAX® 10**
US EPA Method IP-8		•		
NIOSH Method 1003			•	
NIOSH Method 1403	•			
NIOSH Method 1500/1501	•			
NIOSH Method 2530		•		
NIOSH Method 2542	•			
NIOSH Method 5503		•		
OSHA Method 52				•
OSHA Method 53	•			
OSHA Method 56	•			
OSHA Method 62		•		
OSHA Method 80				•

** Indicated columns are available in Intuvo format

Volatile Compounds by US EPA Method 524.2 (PT/GC)

Sample/Matrix:	10 ppb each component in 5 mL water
Purge Trap:	VOCARB® 3000 (21066-U)
Purge:	40 mL/min for 11 min
Dry Purge:	3 min
Desorption Process:	250 °C for 4 min
Bake:	280 °C for 10 min
Column:	VOCOL [®] , 105 m x 0.53 mm I.D., 3.0 µm film (25358)
Oven:	35 °C (10 min), 4 °C/min to 200 °C (10 min)
Scan Range:	m/z = 35-260 at 0.6 scan/sec
Carrier Gas:	helium, 10 mL/min
1. Dichlorodifluorome	thane 11. 2,2-Dichloropropane

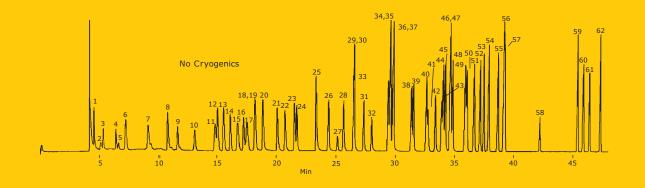
- 2. Chloromethane
- 3. Vinyl chloride
- 4. Bromomethane
- 5. Chloroethane 6. Trichlorofluoromethane
- 7. 1,1-Dichloroethylene
- 8. Methylene chloride
- 9. trans-1,2-Dichloroethylene 10. 1,1-Dichloroethane
- 14. Bromochloromethane 15. 1,1,1-Trichloroethane 16. 1,1-Dichloropropene

12. cis-1,2-Dichloroethylene

- 17. Carbon tetrachloride
- 18. 1,2-Dichloroethane

13. Chloroform

- 19. Benzene
- 20. Fluorobenzene (int std)


- 21. Trichloroethylene
- 22. 1,2-Dichloropropane
- 23. Bromodichloromethane 24. Dibromomethane
- 25. cis-1,3-Dichloropropene

- 26. Toluene 27. trans-1,3-Dichloropropene 28. 1,1,2-Trichloroethane
- 29. 1,3-Dichloropropane
- 30. Tetrachloroethylene
- 31. Chlorodibromomethane
- 32. 1,2-Dibromoethane
- 33. Chlorobenzene 34. 1,1,1,2-Tetrachloroethane
- 35. Ethylbenzene
- 36. m-Xylene 37. p-Xylene
- 38. o-Xylene
- 39. Styrene
- 40. Isopropylbenzene

41. Bromoform

- 42. 1,1,2,2-Tetrachloroethane
 43. 1,2,3-Trichloropropane
 44. n-Propylbenzene

- 45. Bromobenzene
- 46. 1,3,5-Trimethylbenzene
- 47. 2-Chlorotoluene
- 48. 4-Chlorotoluene
- 49. tert-Butylbenzene
- 50. 1,2,4-Trimethylbenzene
- 51. sec-Butylbenzene
- 52. p-Isopropyltoluene
- 53. 1,3-Dichlorobenzene
- 54. 1,4-Dichlorobenzene
- 55. n-Butylbenzene
- 56. 1,2-Dichlorobenzene-d₄ (int std)
- 57. 1,2-Dichlorobenzene 58. 1,2-Dibromo-3-chloropropane
- 59. 1,2,4-Trichlorobenzene
- 60. Hexachlorobutadiene
- 61. Naphthalene
- 62. 1,2,3-Trichlorobenzene

Column Selection by GC Technique & Application

In addition to the industry specific selection charts on the preceding pages, these easy-to-read phase selection charts highlight choices for applications that are independent of any industry. Simply locate the application to identify a recommended column phase.

The stationary phase also dictates the minimum and maximum temperatures at which a column can be used. Therefore, it is critical to ensure the selected stationary phase can withstand the temperature requirements of the GC method.

Fast GC Applications

	SLB®-1ms**	Equity®-1**	SLB®-5ms**	Equity®-5**	SPB®-624	vocol®**	Equity®-1701**	Omegawax®**	SUPELCOWAX [®] 10**	SLB®-IL59	SP®-2560	SLB®-IL82	SLB®-IL100	SLB®-IL111i
Volatiles					٠	•								
Semivolatiles			•											
Pesticides			•	•			•							
PCBs			•	•			•			•		•		•
Fuels by Pattern Recognition	•	•	•											
Aromatics									•	•			•	•
Sulfur Compounds										•				
Biodiesel: FAME Profile								•						•
Solvents			•						•					
Aromatic Amines (Anilines)										•				
Omega 3 and Omega 6 FAMEs								•		•				
cis/trans FAME Isomers											•			•
Nitrosamines			•							•				
Essential Oils	•	•	•						•					
Drugs of Abuse			•											
General Purpose Non-Polar	•	•		•										
General Purpose Intermediate Polar							•							
General Purpose Polar									•					

** Indicated columns are available in Intuvo format

GCxGC Applications

	SLB®-5ms**	Equity®-5**	SPB®-5**	PTA-5	SAC-5	SLB®-1ms**	SPB®-1**	SUPELCOWAX® 10**	SLB◎-IL60i**	SLB®-IL59	SLB®-IL61	SLB®-IL111i	SP®-2380**	SLB®-IL76i	SLB®-IL82	SP®-2331**
Non-Polar Primary (1°) Column	•	•	•	•	•	•	•									
Polar Secondary (2°) Column								•		•	•	•		٠	•	
Polar Primary (1°) Column								•	•	•	•	•	•	•	•	•
Non-Polar Secondary (2°) Column	•	•				•										

Chiral Applications

	Astec [®] CHIRALDEX [®] TA	Astec [®] CHIRALDEX [®] PN	Astec [®] CHIRALDEX [®] DP	Astec [®] CHIRALDEX [®] BP	Astec [®] CHIRALDEX [®] DM	Supelco® DEX 325	Supelco® DEX 225	Astec [®] CHIRALDEX [®] PM	Supelco® DEX 110	Supelco [®] DEX 120**	Astec [®] CHIRALDEX [®] DA	Astec [®] CHIRALDEX [®] PH	a-Cyclodextrins	β-Cyclodextrins	y-Cyclodextrins
Oxygen containing analytes in the form of alcohols, ketones, acids, aldehydes, and lactones; halogenated compounds	•														
Lactones and aromatic amines; epoxides; styrene oxide		•													
Aliphatic and aromatic amines; aliphatic and some aromatic esters; polar racemates			•												
Amino acids; amines; furans				٠											
Aliphatic, olefinic, and aromatic enantiomers					•	•	•					•			
Terpenes and tertiary amines								٠	•	•					
Heterocyclic amines											•				
Xylenes; menthols; cresols; substituted phenols; substituted benzenes; epoxide enantiomers													•		
Acids; alcohols; amines; diols; esters; ethers; halohydrocarbons; hydrocarbons; ketones; positional isomers; silanes; terpenes; terpineols														•	
a-BHC; carvone; carboxylic acids; methamphetamine															•

** Indicated columns are available in Intuvo format

General Purpose (non-MS) Applications

	Equity®-1**	SPB®-1**	Equity®-5**	SPB®-5**	SPB◎-20**	Equity®-1701**	SPB®-35	SPB®-50	SPB®-225	PAG	SUPELCOWAX [®] 10**	SP®-2330	SP®-2380**	SP®-2340**
Non-Polar Column	•	•	•	•										
Intermediate Polar Column					•	•	•	•						
Polar Column									•	•	•			
Highly Polar Column												•	•	•

Cross-Reference Chart

Supelco® Capillary GC Columns with Comparable Columns from Other Manufacturers

Supelco	Agilent [®] , Varian	Grace	Macherey-Nagel	Phenomenex®	Restek	SGE
Traditional (phases	s by increasing phase polarity)					
Petrocol [®] DH Octyl	-	_	_	_	_	_
SPB®-Octyl	CP-Sil 2 CB	_	_	_	_	_
SPB®-HAP	_	_	_	_	_	_
Petrocol® DH 50.2	DB-Petro, HP-PONA	_	_	_	_	BP1 PONA
Petrocol [®] DH	DB-Petro, CP-Sil PONA CB	AT-Petro	_	_	Rtx-1PONA	BP1 PONA
Petrocol [®] DH 150	_	_	_	_	_	_
Petrocol [®] 2887, Petrocol [®] EX2887	DB-2887, CP-SimDist	AT-2887	-	_	Rtx-2887	-
SPB®-1 SULFUR	CP-Sil 5 CB for Sulfur	AT-Sulfur	_	_	_	_
Equity [®] -1, SPB [®] -1	DB-1, HP-1, CP-Sil 5 CB	AT-1	Optima-1	ZB-1	Rtx-1	BP1
SLB [®] -5ms	DB-5ms, HP-5ms, VF-5ms	AT-5ms	Optima-5 MS	ZB-5ms	Rtx-5Sil MS	BPX5
MET-Biodiesel	Select Biodiesel for Triglycerides	_	-	_	MXT-BiodieselTG	_
HT-5 (aluminum clad)	DB-5ht, VF-5ht	-	-	ZB-5ht	-	HT-5
PTA-5	CP-Sil 8 CB for Amines	AT-Amine	-	-	Rtx-5 Amine	_
SAC™-5	_	_	-	-	-	_
Equity [®] -5, SPB [®] -5	DB-5, HP-5, CP-Sil 8 CB	AT-5	Optima-5	ZB-5	Rtx-5	BP5
SPB®-624	DB-624, DB-VRX, CP-Select 624 CB	AT-624	Optima-624	ZB-624	Rtx-624	BP624
OVI-G43	HP-Fast Residual Solvent	-	-	-	Rtx-G43	_
VOCOL®	DB-502.2, HP-VOC	AT-502.2	_	_	Rtx-502.2, Rtx-Volatiles	_
SPB®-20	_	AT-20	_	_	Rtx-20	_
Equity®-1701	DB-1701, CP-Sil 19 CB	AT-1701	Optima-1701	ZB-1701	Rtx-1701	BP10
SPB®-608	DB-608	AT-Pesticide	_	_	_	_
Sup-Herb™	_	_	_	_	_	_
SPB®-35	DB-35, HP-35	AT-35	_	ZB-35	Rtx-35	_
SPB®-35ms						
SPB [®] -50	DB-17, HP-50, CP-Sil 24 CB	AT-50	Optima-17	ZB-50	_	_
SPB®-225	DB-225, CP-Sil 43 CB	AT-225	Optima-225	_	Rtx-225	BP225
SPB [®] -PUFA	_	_	_	_	_	_
PAG	_	_	_	_	_	_
SPB®-1000, Nukol™	DB-FFAP, HP-FFAP, CP-FFAP CB	AT-1000, AT-AquaWax-DA	Optima-FFAP	ZB-FFAP	Stabilwax [®] -DA	BP21
Carbowax [®] Amine	CAM, CP-Wax 51 for Amines	AT-CAM	-	-	Stabilwax-DB	_
Omegawax®	-	AT-FAME	_	_	FAMEWAX	_
SUPELCOWAX® 10	DB-WAX, CP-Wax 52 CB	AT-WAX, AT-AquaWax	Optima-WAX	ZB-WAX	Rtx-WAX, Stabilwax	BP20
SLB®-IL59	_	_	_	_	_	-
SLB®-IL60i	_	_	_	_	_	_
SP™-2330	HP-88	_	-	-	Rtx-2330	_
SLB®-IL76i	-	-	-	-	_	-
SP®-2331	DB-Dioxin, CP-Sil 88 for Dioxins	—	—	-	Rtx-Dioxin2	_
SP®-2380	-	AT-Silar 90	-	-	-	-
SP®-2560	CP-Sil 88 for FAME	_	-	-	Rt-2560	_
SP [®] -2340	CP-Sil 88	AT-Silar 100	_	-	_	_
SLB®-IL82	_	_	_	_	-	-
TCEP	CP-TCEP	_	_	_	Rt-TCEP	-
SLB®-IL100	-	_	_	_	_	-
SLB®-IL111i	_	_	_	_	_	_

Supelco	Agilent [®] , Varian	Grace	Macherey-Nagel	Phenomenex®	Restek	SGE
Chiral Phases						
CHIRALDEX®	_	_	_	_	_	-
a-DEX™	_	_	FS-LIPODEX	_	_	-
β-DEX™	CycloSil-B	_	FS-LIPODEX, FS-HYDRODEX	_	Rt-βDEX	CYDEX-B
γ-DEX™	-	_	FS-LIPODEX	_	Rt-γDEX	-
PLOT Columns						
Carboxen®-1010 PLOT	CP-CarboPLOT P7	_	_	_	_	-
Carboxen®-1006 PLOT	GS-Carbon PLOT, CP-CarboBOND	Carbograph VOC	_	_	_	-
Supel-Q [™] PLOT	HP-PLOT Q, CP-PoraPLOT Q	AT-Q	_	_	Rt-QPLOT	-
Alumina sulfate PLOT	HP-PLOT AI_2O_3 "S", CP- AI_2O_3 PLOT Na_2SO_4	_	_	_	_	-
Alumina KCI PLOT	HP-PLOT Al ₂ O ₃ "KCI", CP-Al ₂ O ₃ PLOT KCI	_	_	_	-	-
Mol Sieve 5A PLOT	HP-PLOT Molesieve, CP-Molsieve 5A	AT-Mole Sieve	_	_	Rt-Msieve 5A	-
SCOT Columns						
SCOT Columns	-	_	_	_	_	_

Capillary Columns by Phase

Traditional Phases: Non-Polar

Non-polar GC columns are made with the least selective of the GC stationary phases. They are commonly used to separate non-polar compounds (such as alkanes) that contain 1) only carbon and hydrogen atoms, and 2) only single bonds between carbon atoms. Elution order generally follows the boiling points of the analytes.

- Interactions are primarily dispersive (van der Waals forces).
- Phases with phenyl functional groups can also undergo a moderate amount of π - π interactions.
- PTA-5 columns are specially-engineered to also allow strong basic interactions.
- Phases with octyl functional groups also possess shape selectivity.

Petrocol® DH Octyl

- **Application:** This column, for detailed analyses of petroleum products, is known within the petroleum and chemical industries for its unique selectivity. Baseline separations of benzene/1-methylcyclopentene and toluene/2,3,3-trimethylpentane that are possible with this column are not obtainable with classical poly(dimethyl siloxane) columns.
- USP Code: None
- Phase: Bonded; poly(50% *n*-octyl/50% methyl siloxane)
- Temp. Limits: -60 °C to 220 °C (isothermal or programmed)

SPB®-Octyl

- **Application:** The low polarity of this column approaches squalane, making it substantially less polar than that of the widely used non-polar poly(dimethyl siloxane) columns. This column offers unique selectivity compared to non-polar and intermediate polarity columns, and can be used for confirmational analyses of PCB-containing samples.
- USP Code: None
- Phase: Bonded; poly(50% n-octyl/50% methyl siloxane)
- Temp. Limits:
 - \leq 0.32 mm I.D.: -60 °C to 280 °C (isothermal or programmed)
 - ≥0.53 mm I.D.: -60 °C to 260 °C (isothermal or programmed)

SPB®-HAP

- **Application:** This column was developed to provide the best resolution of very volatile hazardous air pollutants. The thick film helps to focus analytes on the column, possibly eliminating the need to employ cryogenic focusing techniques.
- USP Code: This column meets USP G1, G2 and G9 requirements.
- Phase: Bonded; poly(dimethyl siloxane)
- Temp. Limits: -60 °C to 300 °C (isothermal or programmed)

Petrocol® DH 50.2, DH, DH 150

- **Application:** These highly reproducible columns have considerable theoretical plate numbers and are designed for detailed analyses of petroleum products for PIANO, PONA and PNA-type analytes. The 100 m version includes an extensive retention index data sheet of 400+ analytes.
- USP Code: These columns meet USP G1, G2 and G9 requirements.
- Phase: Bonded; poly(dimethyl siloxane)
- Temp. Limits: -60 °C to 320 °C (isothermal or programmed)

Petrocol[®] 2887, EX2887

- Application: These columns are designed for ASTM Method D2887 (simulated distillation [Sim Dis] of petroleum fractions). Choose Petrocol[®] 2887 for samples with boiling points up to 1,000 °F. Use Petrocol[®] EX2887 for samples having boiling points greater than 1,000 °F.
- USP Code: These columns meet G1, G2 and G9 requirements.
- Phase: Bonded; poly(dimethyl siloxane)
- Temp. Limits:
 - Petrocol[®] 2887: Subambient to 350 °C (isothermal or programmed)
 - Petrocol[®] EX2887: Subambient to 380 °C (isothermal or programmed)

SPB®-1 SULFUR

- Application: A specialized version of the SPB®-1, this column was developed for analyses of sulfur gases and other volatile sulfur compounds. The column displays relatively low column bleed, which makes it compatible for use with sulfur-specific detectors.
- USP Code: This column meets USP G1, G2 and G9 requirements.
- **Phase:** Bonded; poly(dimethyl siloxane)
- Temp. Limits: -60 °C to 300 °C (isothermal or programmed)

Equity[®]-1

- **Application:** This column is designed for general purpose applications where a non-polar column is required. Analytes will be separated primarily according to boiling point.
- USP Code: This column meets USP G1, G2 and G9 requirements.
- Phase: Bonded; poly(dimethyl siloxane)
- Temp. Limits:
 - − ≤0.32 mm I.D., <2 μm : -60 °C to 325 °C (isothermal) or 350 °C (programmed)
 - ≤ 0.32 mm I.D., $\geq 2~\mu m:$ -60 °C to 300 °C (isothermal or programmed)
 - − ≥0.53 mm I.D., <2 μm : -60 °C to 300 °C (isothermal) or 320 °C (programmed)
 - − ≥0.53 mm I.D., ≥2 µm: -60 °C to 260 °C (isothermal) or 280 °C (programmed)

SPB®-1

- **Application:** This column is often used for traditional general purpose applications, where a non-polar column is required. Analytes will be separated primarily according to boiling point.
- USP Code: This column meets USP G1, G2 and G9 requirements.
- Phase: Bonded; poly(dimethyl siloxane)
- Temp. Limits:
 - ≤ 0.32 mm I.D., $< 2~\mu m:$ -60 °C to 320 °C (isothermal or programmed)
 - ≤ 0.32 mm I.D., $\geq 2~\mu m:$ -60 °C to 300 °C (isothermal or programmed)
 - − \geq 0.53 mm I.D., <2 µm: -60 °C to 300 °C (isothermal) or 320 °C (programmed)
 - − \geq 0.53 mm I.D., \geq 2 µm: -60 °C to 260 °C (isothermal) or 280 °C (programmed)

SLB[®]-5ms

- **Application:** The 5% phenyl equivalent phase provides a boiling point elution order with a slight increase in selectivity, especially for aromatic compounds. The low bleed characteristics, inertness, and durable nature make it the column of choice for environmental analytes (such as semivolatiles, pesticides, PCBs, and herbicides) or anywhere a low bleed non-polar column is required.
- **USP Code:** This column meets USP G27 and G36 requirements.
- **Phase:** Bonded and highly crosslinked; silphenylene polymer virtually equivalent in polarity to poly(5% diphenyl/95% dimethyl siloxane)
- Temp. Limits:
 - ≤0.32 mm I.D.: -60 °C to 340 °C (isothermal) or 360 °C (programmed)
 - ≥0.53 mm I.D.: -60 °C to 330 °C (isothermal) or 340 °C (programmed)

MET-Biodiesel

- Application: This rugged metal column was designed specifically for the determination of free and total glycerin in B100 biodiesel samples. A guard is integrated, thereby providing protection with a leak-free connection (the guard and analytical column are one continuous piece of tubing; there is no union between the guard and analytical column).
- USP Code: None
- Phase: Bonded; proprietary
- Temp. Limits: -60 °C to 380 °C (isothermal) or 430 °C (programmed)

HT-5 (aluminum clad)

- **Application:** This column offers the highest maximum temperature of any commercially available column. It is well suited for simulated distillation (Sim Dis) analyses of petroleum samples.
- USP Code: None
- **Phase:** Bonded; siloxane-carborane equivalent in polarity to poly(5% diphenyl/95% dimethyl siloxane)
- Temp. Limits: 10 °C to 460 °C (isothermal) or 480 °C (programmed)

PTA-5

- Application: This column is designed for analyses of amines and other basic analytes.
- USP Code: None
- Phase: Bonded; base-modified poly(5% diphenyl/95% dimethyl siloxane)
- Temp. Limits:
 - ≤0.32 mm I.D.: -60 °C to 320 °C (isothermal or programmed)
 - − ≥0.53 mm I.D., <2 μm : -60 °C to 320 °C (isothermal or programmed)
 - − ≥0.53 mm I.D., ≥2 µm: -60 °C to 260 °C (isothermal) or 280 °C (programmed)

SAC[™]-5

- Application: This column is an application specific non-polar column, designed for reproducible analyses of plant sterols, cholesterol and other animal sterols.
- USP Code: None
- Phase: Bonded; poly(5% diphenyl/95% dimethyl siloxane)
- Temp. Limits: -60 °C to 320 °C (isothermal or programmed)

Equity[®]-5

- **Application:** This popular column is designed for general purpose applications where a non-polar column is required. The low phenyl content provides thermal stability compared to 100% poly(dimethyl siloxane) columns.
- USP Code: This column meets USP G27 and G36 requirements.
- Phase: Bonded; poly(5% diphenyl/95% dimethyl siloxane)
- Temp. Limits:
 - − \leq 0.32 mm I.D., <2 µm: -60 °C to 325 °C (isothermal) or 350 °C (programmed)
 - ≤ 0.32 mm I.D., $\geq 2~\mu m:$ -60 °C to 300 °C (isothermal or programmed)
 - − \geq 0.53 mm I.D., <2 µm: -60 °C to 300 °C (isothermal) or 320 °C (programmed)
 - − \geq 0.53 mm I.D., \geq 2 µm: -60 °C to 260 °C (isothermal) or 280 °C (programmed)

SPB[®]-5

- **Application:** This non-polar general purpose column provides primarily a boiling point elution order with a slight increase in selectivity, especially for aromatic compounds.
- **USP Code:** This column meets USP G27 and G36 requirements.
- Phase: Bonded; poly(5% diphenyl/95% dimethyl siloxane)
- Temp. Limits:
 - \leq 0.32 mm I.D., <2 µm: -60 °C to 320 °C (isothermal or programmed)
 - ≤ 0.32 mm I.D., $\geq 2~\mu m:$ -60 °C to 300 °C (isothermal or programmed)
 - − ≥0.53 mm I.D., <2 μm : -60 °C to 300 °C (isothermal) or 320 °C (programmed)
 - ≥ 0.53 mm I.D., $\geq 2~\mu m:$ -60 °C to 260 °C (isothermal) or 280 °C (programmed)

Traditional Phases: Intermediate Polar

Intermediate polar GC columns are made with phases that incorporate both non-polar and polar elements. Thus, they are commonly used to provide alternate selectivity to non-polar and polar columns. Elution order is determined by differences in the overall effects of possible interactions.

- Interactions are strongly dispersive (van der Waals forces). The greater the phenyl content of the phase, the stronger the interactions.
- Phases with phenyl functional groups can also undergo π-π, dipole-dipole, and dipole-induced dipole interactions. The greater the phenyl content, the stronger these interactions.
- Phases with cyanopropyl functional groups can also undergo strong dipole-dipole and moderate basic interactions. The greater the cyanopropyl content, the greater these interactions.

SPB®-624

- Application: This column is specially tested for separation, efficiency, and low bleed. It is designed for purge-and-trap analyses of volatile halogenated, non-halogenated, and aromatic contaminants from environmental samples.
- USP Code: This column meets USP G43 requirements.
- Phase: Bonded; proprietary
- Temp. Limits:
 - \leq 0.32 mm I.D.: Subambient to 250 °C (isothermal or programmed)
 - ≥0.53 mm I.D.: Subambient to 230 °C (isothermal or programmed)

OVI-G43

- **Application:** This column is specially prepared and tested to meet the requirements of United States Pharmacopoeia and European Pharmacopoeia methods for determining residual solvents in pharmaceutical preparations.
- USP Code: This column meets USP G43 requirements.
- Phase: Bonded; poly(6% cyanopropylphenyl/94% dimethyl siloxane)
- Temp. Limits: -20 °C to 260 °C (isothermal or programmed)

VOCOL® Column

- **Application:** This intermediate polarity column, designed for analyses of volatile organic compounds (VOCs), offers great retention and resolution of highly volatile compounds. Use this column in direct injection ports or coupled to purge-and-trap systems.
- USP Code: None
- Phase: Bonded; proprietary
- Temp. Limits:
 - ≤ 0.32 mm I.D., $< 2 \, \mu m$: Subambient to 250 °C (isothermal or programmed)
 - ≤0.32 mm I.D., ≥2 μ m: Subambient to 230 °C (isothermal or programmed)
 - ≥0.53 mm I.D., <2 μm : Subambient to 250 °C (isothermal or programmed)
 - \geq 0.53 mm I.D., \geq 2 µm: Subambient to 230 °C (isothermal or programmed)

SPB®-20

- **Application:** This column has intermediate polarity due to the higher (20%) phenyl content, producing a different elution order of polar compounds for confirmational information. It is often used for analyses of aromatic analytes.
- USP Code: This column meets USP G32 requirements.
- Phase: Bonded; poly(20% diphenyl/80% dimethyl siloxane)
- Temp. Limits: -25 °C to 300 °C (isothermal or programmed)

Equity®-1701

- Application: Increased phase polarity, due to cyanopropylphenyl functional group substitution, offers unique selectivity compared to other phases. This column works well with systems employing ECD, NPD, and MSD detectors, and is often used for alcohols, oxygenates, pharmaceuticals, pesticides, and PCB applications.
- USP Code: This column meets G46 requirements
- Phase: Bonded; poly(14% cyanopropylphenyl/86% dimethyl siloxane)
- Temp. Limits:
 - ≤0.32 mm I.D.: Subambient to 280 °C (isothermal or programmed)
 - ≥0.53 mm I.D.: Subambient to 260 °C (isothermal or programmed)

SPB-608

- **Application:** This column is specially tested with low concentrations of 18 chlorinated pesticides, using an ECD detector. In addition to selectivity and efficiency, it is also tested to ensure minimum breakdown of 4,4'-DDT and endrin. This column is also suitable for use in herbicide analyses.
- USP Code: None
- Phase: Bonded; proprietary
- Temp. Limits: Subambient to 300 °C (isothermal or programmed)

SPB®-35

- Application: With a phenyl content of 35%, this column offers a higher polarity option compared to columns containing a lower phenyl content. This column is useful for analyses of polar compounds because they are retained longer relative to non-polar compounds.
- USP Code: This column meets USP G42 requirements.
- Phase: Bonded; poly(35% diphenyl/65% dimethyl siloxane)
- Temp. Limits: 0 °C to 300 °C (isothermal or programmed)

SPB®-50

- **Application:** This column has the highest phenyl content of the common phenyl-containing series of phases. The column is useful for analyses of polar analytes and provides useful confirmational information. It also offers additional selectivity for polynuclear aromatic hydrocarbon isomers over columns with lower phenyl content.
- USP Code: This column meets USP G3 requirements.
- Phase: Bonded; poly(50% diphenyl/50% dimethyl siloxane)
- Temp. Limits: 30 °C to 310 °C (isothermal or programmed)

Traditional Phases: Polar

Polar GC columns are made using polar stationary phases, the most common being polyethylene glycol and modified versions. These columns are commonly used to separate polar analytes (such as alcohols, amines, carboxylic acids, diols, esters, ethers, ketones, and thiols) that contain 1) primarily carbon and hydrogen atoms, and 2) also some bromine, chlorine, fluorine, nitrogen, oxygen, phosphorus, and/or sulfur atoms. Elution order is determined by differences in the overall effects of possible interactions.

- Dispersive (van der Waals forces), π-π, dipole-dipole, and dipole-induced dipole interactions are all strong with these columns.
- Moderate amounts of hydrogen bonding and basic interactions are also possible.
- SPB[®]-1000 and Nukol[™] columns are specially-engineered to also allow strong acidic interactions.
- Carbowax[®] amine columns are specially-engineered to also allow strong basic interactions.

SPB®-225

- **Application:** We offer the broadest range of cyanopropyl columns in the industry, such as this intermediate polarity column.
- **USP Code:** This column meets USP G7 and G19 requirements.
- Phase: Bonded; poly(50% cyanopropylphenyl/50% dimethyl siloxane)
- Temp. Limits: 45 °C to 220 °C (isothermal) or 240 °C (programmed)

SPB®-PUFA

- **Application:** This column provides the necessary polarity for analyses of polyunsaturated fatty acids (PUFAs) as fatty acid methyl esters (FAME). This column is specifically tuned to provide highly reproducible analyses.
- USP Code: This column meets USP G18 requirements.
- Phase: Bonded; poly(alkylene glycol)
- Temp. Limits: 50 °C to 220 °C (isothermal or programmed)

PAG

- **Application:** This column fills the polarity space between a 50% phenyl substituted column and a classical wax-type column, due to its polarity being slightly lower than a waxtype column. It is well suited for analyses of alcohols.
- USP Code: This column meets USP G18 requirements.
- Phase: Bonded; poly(alkylene glycol)
- Temp. Limits: 30 °C to 220 °C (isothermal or programmed)

SPB®-1000

- **Application:** The incorporation of acid functional groups into the phase lends an acidic character to this column, useful for analyses of volatile acidic compounds. It offers great performance for analyses of glycols. It is the recommended column for ethylene glycol analysis.
- USP Code: This column meets USP G25 and G35 requirements.
- Phase: Bonded; acid-modified poly(ethylene glycol)
- Temp. Limits: 60 °C to 200 °C (isothermal) or 220 °C (programmed)

Nukol[™]

- **Application:** The incorporation of acid functional groups into the phase lends an acidic character to this column, useful for analyses of volatile acidic compounds. Difficult to analyze carboxylic acids (free fatty acids) can be analyzed with excellent peak shape and minimal adsorption.
- USP Code: This column meets USP G25 and G35 requirements.
- **Phase:** Bonded; acid-modified poly(ethylene glycol)
- Temp. Limits: 60 °C to 200 °C (isothermal) or 220 °C (programmed)

Carbowax® Amine

- **Application:** This specially prepared base-deactivated column is designed for analyses of primary, secondary, and tertiary amines, as well as other volatile basic compounds.
- USP Code: None.
- Phase: Non-bonded; base-modified poly(ethylene glycol)
- Temp. Limits: 60 °C to 200 °C (isothermal or programmed)

Omegawax® Column

- Application: This column allows highly reproducible analyses of fatty acid methyl esters (FAMEs), specifically the omega 3 and omega 6 fatty acids. It is tested to ensure reproducible FAME equivalent chain length (ECL) values and resolution of key components.
- USP Code: This column meets USP G16 requirements.
- Phase: Bonded; poly(ethylene glycol)
- Temp. Limits: 50 °C to 280 °C (isothermal or programmed)

SUPELCOWAX® 10

- Application: This column is based on one of the most widely used polar phases, Carbowax 20M, and is a polar column suitable for analyses of solvents, fatty acid methyl esters (FAMEs), food, flavor and fragrance compounds, alcohols, and aromatics. Additionally, this column is a great choice when a polar general purpose column is required.
- USP Code: This column meets USP G16 requirements.
- Phase: Bonded; poly(ethylene glycol)
- Temp. Limits:
 - ≤0.32 mm I.D.: 35 °C to 280 °C (isothermal or programmed)
 - ≥0.53 mm I.D., <2 µm: 35 °C to 280 °C (isothermal or programmed)
 - ≥ 0.53 mm I.D., $\geq 2~\mu m\colon 35~^{o}C$ to 250 ^{o}C (isothermal or programmed)

SLB®-IL59

- Application: Selectivity more polar than PEG/wax phases, resulting in unique elution patterns. Higher maximum temperature than PEG/wax columns (300 °C compared to 270–280 °C). Great choice for analysis of neutral and moderately basic analytes.
- USP Code: None
- Phase: Non-bonded; 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide
- Temp. Limits: Subambient to 300 °C (isothermal or programmed)

SLB®-IL60i

- Application: Modified (deactivated) version of SLB®-IL59 provides better inertness. Selectivity more polar than PEG/ wax phases, resulting in unique elution patterns. Higher maximum temperature than PEG/wax columns (300 °C compared to 270–280 °C). Excellent alternative to existing PEG/wax columns. Also a good GCxGC column choice.
- USP Code: None
- Phase: Non-bonded; 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide
- Temp. Limits: 35 °C to 300 °C (isothermal or programmed)

SLB®-IL61

- Application: The first of our third generation ionic liquid columns. Modified (triflate anion) version of SLB[®]-IL59 increases inertness. Selectivity more polar than PEG/wax phases, resulting in unique elution patterns. Higher maximum temperature than PEG/wax columns (290 °C compared to 270–280 °C). Great choice for analysis of neutral and moderately basic analytes.
- USP Code: None
- Phase: Non-bonded; 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide trifluoromethylsulfonate
- Temp. Limits: 40 °C to 290 °C (isothermal or programmed)

Traditional Phases: Highly Polar

Highly polar GC columns are made with very selective GC stationary phases, typically containing high percentages of cyanopropyl functional groups. They are commonly used to analyze polarizable compounds (such as alkenes, alkynes, and aromatic hydrocarbons) that contain 1) only carbon and hydrogen atoms, and 2) some double and/or triple bonds between carbon atoms. Elution order is determined by differences in the overall effects of possible interactions.

 Strong dispersive (van der Waals forces), very strong dipole-dipole, very strong dipole-induced dipole, and moderate basic interactions are possible. The greater the cyanopropyl content of the phase, the greater these interactions.

SP®-2330

- Application: We offer the broadest range of biscyanopropyl phases in the industry. This column is a highly specialized column that offers both polar and polarizable features due to the substitution of biscyanopropyl and phenyl groups onto the polymer backbone. It can be used for both high and low temperature separations for analytes such as geometric isomers of fatty acid methyl esters (FAMEs), dioxins, and aromatic compounds.
- USP Code: This column meets USP G8 requirements.
- **Phase:** Non-bonded; poly(80% biscyanopropyl/20% cyanopropylphenyl siloxane)
- Temp. Limits: Subambient to 250 °C (isothermal or programmed)

SLB®-IL76i

- **Application:** The first of our second generation ionic liquid columns. Phase structure engineered with numerous interaction mechanisms, resulting in selectivity differences even when compared to columns with similar GC column polarity scale values.
- USP Code: None
- Phase: Non-bonded; tri(tripropylphosphoniumhexanamido) triethylamine bis(trifluoromethylsulfonyl)imide
- Temp. Limits: Subambient to 270 °C (isothermal or programmed)

SP®-2331

- **Application:** A highly polar cyanosiloxane column specially tested for analyses of dioxins, specifically tetrachlorodibenzodioxin (TCDD) isomers. Because the phase is stabilized, it has a maximum temperature slightly higher than non-bonded cyanosiloxane columns.
- USP Code: None
- Phase: Stabilized; proprietary
- Temp. Limits: Subambient to 275 °C (isothermal or programmed)

SP®-2380

- **Application:** A highly polar cyanosiloxane column commonly used for separation of geometric (*cis/trans*) fatty acid methyl ester (FAME) isomers as a group. Also useful when a highly polar general purpose column with good thermal stability is required.
- USP Code: This column meets USP G48 requirements.
- **Phase:** Stabilized; poly(90% biscyanopropyl/10% cyanopropylphenyl siloxane)
- Temp. Limits: Subambient to 275 °C (isothermal or programmed)

SP®-2560

- **Application:** This highly polar biscyanopropyl column was specifically designed for detailed separation of geometric-positional (*cis/trans*) isomers of fatty acid methyl esters (FAMEs). It is extremely effective for FAME isomer applications.
- USP Code: This column meets USP G5 requirements.
- **Phase:** Non-bonded; poly(biscyanopropyl siloxane)
- Temp. Limits: Subambient to 250 °C (isothermal or programmed)

SP®-2340

- **Application:** This non-bonded column offers the highest polarity in its class. As with all general purpose biscyanopropyl columns, it is highly effective for both high and low temperature separations of geometric isomers of fatty acid methyl esters (FAMEs), dioxins, carbohydrates, and aromatic compounds.
- USP Code: This column meets USP G5 requirements.
- Phase: Non-bonded; poly(biscyanopropyl siloxane)
- Temp. Limits: Subambient to 250 °C (isothermal or programmed)

SLB®-IL82

- **Application:** Selectivity slightly more polar than polysiloxane phases with a high percentage of cyanopropyl pendent groups, resulting in unique elution patterns. Great choice for analysis of neutral and moderately basic analytes.
- USP Code: None
- **Phase:** Non-bonded; 1,12-di(2,3-dimethylimidazolium) dodecane bis(trifluoromethylsulfonyl)imide
- Temp. Limits: 50 °C to 270 °C (isothermal or programmed)

TCEP

- **Application:** The unique chemistry of the phase allows for specialized separations. It is often used for analyses of alcohols and aromatics in mineral spirits, aliphatic constituents in gasoline, impurities in individual aromatics, and oxygenates.
- USP Code: None
- **Phase:** Non-bonded; 1,2,3-tris(2-cyanoethoxy)propane
- Temp. Limits: Subambient to 145 °C (isothermal or programmed)

SLB®-IL100

- Application: World's first commercially available ionic liquid GC column. Serves as the benchmark of 100 on our GC column polarity scale. Selectivity almost identical to TCEP phase. Higher maximum temperature than TCEP columns (230 °C compared to 140 °C). Great choice for analysis of neutral and polarizable (contain double and/or triple C-C bonds) analytes.
- USP Code: None
- **Phase:** Non-bonded; 1,9-di(3-vinylimidazolium)nonane bis(trifluoromethylsulfonyl)imide
- Temp. Limits: Subambient to 230 °C (isothermal or programmed)

Traditional Phases: Extremely Polar

Extremely polar GC columns are made with the most selective of the GC stationary phases. They are commonly used to provide alternative selectivity of polarizable compounds. Another use is in GCxGC applications due to their orthogonal selectivity to non-polar columns. Elution order is determined by differences in the overall effects of possible interactions.

 Strong dispersive (van der Waals forces), very strong dipole-dipole, very strong dipole-induced dipole, and moderate basic interactions are possible.

SLB®-IL111i

- Application: World's first commercial column to rate over 100 on our GC column polarity scale. Selectivity most orthogonal to non-polar and intermediate polar phases, resulting in very unique elution patterns. Maximum temperature of 270 °C is very impressive for such an extremely polar column. Great choice for separation of polarizable analytes (contain double and/or triple C-C bonds) from neutral analytes. Also a good GCxGC column choice.
- USP Code: None
- Phase: Non-bonded; 1,5-di(2,3-dimethylimidazolium)pentane bis(trifluoromethylsulfonyl)imide
- Temp. Limits: 50 °C to 270 °C (isothermal or programmed)

Chiral Phases

Chiral GC phases consist of derivatives of a-, β -, or y-cyclodextrin for the separation of enantiomers. These phases can routinely separate a variety of underivatized non-aromatic enantiomers and several aromatic enantiomers that remain difficult to resolve by HPLC. These phases specifically and effectively separate many of these types of molecules, including thousands of compounds that are starting materials or intermediates for chiral synthesis, biochemical and pharmaceutical intermediates and metabolites, environmental contaminants, flavors, etc.

CHIRALDEX® Columns

- **Application:** These columns are used for analyses of enantiomers to determine biological activity (pharmaceutical industry), aroma (flavor and fragrance and food and beverage industries), whether hazardous (environmental industry), and purity (chemical industry).
- USP Code: None
- **Phase:** Fourteen specialized phase chemistries comprised of complex derivatives of cyclodextrins that impart a broad range of selectivities
- Temp. Limits:
 - TA Phases: -10 °C to 180 °C (isothermal or programmed)
 - All Other Phases: -10 °C to 200 °C (isothermal) or 220 °C (programmed)

DEX™ Columns

- Application: These columns are used for analyses of enantiomers to determine biological activity (pharmaceutical industry), aroma (flavor and fragrance and food and beverage industries), whether hazardous (environmental industry), and purity (chemical industry).
- USP Code: None
- **Phase:** Ten unique phases comprised of derivatives of cyclodextrins that are able to perform many enantiomeric separations
- Temp. Limits: 30 °C to 230 °C (isothermal or programmed)

PLOT Columns

We offer a wide variety of Porous Layer Open Tubular (PLOT) GC columns, including those made with our specialty carbon adsorbents. A proprietary procedure is used to fix adsorbent particles to the inside of fused silica tubing, and ensures they will not be dislodged in normal use. PLOT GC columns are commonly used for separations of small molecules, such as permanent gases, light hydrocarbons, and volatile sulfur compounds. Choose:

- **Carboxen®-1010 PLOT** for separations of hydrogen, oxygen, nitrogen, carbon monoxide, methane, carbon dioxide, and C2/C3 hydrocarbons. This is the only column that can separate all these permanent gases.
- Carboxen®-1006 PLOT for most permanent gases and C1-C3, using above ambient initial temperatures. Also for resolving formaldehyde/water/methanol (formalin) mixtures and monitoring impurities in ethylene.
- Supel-Q[™] PLOT for analyses of sulfur gases, alcohols, ketones, aldehydes, and many polar compounds. Also for carbon dioxide and C1-C4 hydrocarbons at above ambient temperatures, and for gasoline and other petroleum fractions.
- Alumina sulfate PLOT for C1-C4 hydrocarbons, specifically methane from the C2 hydrocarbons, with reduced peak tailing. Also for elution of acetylene after *n*-butane, and the elution of methyl acetylene after *n*-pentane and 1,3-butadiene.
- Alumina chloride PLOT for C1-C4 hydrocarbons. Also for excellent separation of many common fluorocarbon compounds
- Mol Sieve 5A PLOT for oxygen, nitrogen, carbon monoxide, and methane in less than 5 minutes.
 For more difficult separations, such as argon from oxygen, by using subambient temperatures (15 °C or below).

Carboxen®-1010 PLOT

- **Application:** This column is ideal for the separation of all major components in permanent gas (helium, hydrogen, oxygen, nitrogen, carbon monoxide, methane, and carbon dioxide) and light hydrocarbons (C2-C3) in the same analysis. It is the only column commercially available that is able to separate all major components in permanent gas. This column can also separate oxygen from nitrogen at subambient temperatures.
- USP Code: None
- Phase: Carbon molecular sieve
- Temp. Limits: Subambient to 250 °C (isothermal or programmed)

Carboxen®-1006 PLOT

- **Application:** This column is ideal for the separation of many permanent gas components (such as helium, hydrogen, nitrogen, carbon monoxide, methane, and carbon dioxide), and light hydrocarbons (C2-C3) in the same analysis. It is ideal for resolving formaldehyde/water/methanol (formalin) mixtures and monitoring impurities in ethylene. This column can be used with high flow rates and rapid temperature programs to ensure excellent, fast separations.
- USP Code: None
- Phase: Carbon molecular sieve
- Temp. Limits: Subambient to 250 °C (isothermal or programmed)

Supel-Q[™] PLOT

- Application: This column exhibits very little bleed, even at its maximum temperature, and effectively resolves carbon dioxide and C1-C4 hydrocarbons at above ambient temperatures. It is also suitable for analyses of sulfur gases, alcohols, ketones, aldehydes, and many polar compounds. Gasoline and other petroleum fractions can be analyzed as well.
- USP Code: None
- Phase: Divinylbenzene
- Temp. Limits: Subambient to 250 °C (isothermal or programmed)

Alumina sulfate PLOT

- Application: This highly dependable column has the necessary selectivity for the separation of alkanes, alkenes, and alkynes in mixtures of C1-C4 hydrocarbons. It provides elution of acetylene after n-butane and the elution of methyl acetylene after n-pentane and 1,3-butadiene. The polymer surface is deactivated to reduce peak tailing.
- USP Code: None
- Phase: Sulfate-deactivated alumina
- Temp. Limits: Subambient to 180 °C (isothermal or programmed)

Alumina chloride PLOT

- **Application:** This column allows for the separation of C1-C4 hydrocarbons. Because this column is slightly less polar than the Alumina sulfate PLOT, it provides a different elution order pattern when alkane, alkene, and alkyne mixtures of light hydrocarbons are analyzed. It also provides excellent separation of many common fluorinated compounds, such as freons.
- USP Code: None
- Phase: Chloride-deactivated alumina
- Temp. Limits: Subambient to 180 °C (isothermal or programmed)

Mol Sieve 5A PLOT

- Application: This column can be used for the separation of many permanent gas components, such as oxygen, nitrogen, carbon monoxide, and methane, in less than five minutes. More difficult separations, such as argon from oxygen, can be achieved by using subambient temperatures. These columns possess the strongest adsorption strength of any PLOT column.
- USP Code: None
- Phase: Aluminosilicate
- Temp. Limits: Subambient to 300 °C (isothermal or programmed)

SCOT Columns

We are the leader in Support Coated Open Tubular (SCOT) GC column technology. Our unsurpassed manufacturing technique allows us to deposit a uniform layer of liquid phase-coated support particles on the inner wall of stainless steel tubing. This technology gives us access to many phases that are inaccessible to conventional fused silica capillary column manufacturing technology. SCOT columns combine the sensitivity and excellent sample resolution of capillary GC with the extensive stationary phase library of packed GC.

All our Supelco[®] SCOT columns have dimensions of 50 feet x 1/32 inch O.D. x 0.02 inch I.D. and include 1/16 inch O.D. connections at each end. They are banded in 3.5 inch coils, with 12 inch loose column at each end. Four columns are available as stock items. Columns with other phases may be available through our custom program.

Bentone® 34/DNDP SCOT

- Application: Use for analyses of xylene isomers.
- USP Code: None
- **Phase:** Bentone 34/di-*n*-decyl phthalate
- Temp. Limits: 10 °C to 150 °C (isothermal or programmed)

TCEP SCOT

- Application: Use for analyses of aromatic analytes.
- USP Code: None
- Phase: 1,2,3-Tris(2-cyanoethoxy)propane
- Temp. Limits: 0 °C to 150 °C (isothermal or programmed)

BMEA SCOT

- Application: Use for analyses of olefins.
- USP Code: None
- Phase: Bis-methoxyethyladipate
- Temp. Limits: 25 °C to 100 °C (isothermal or programmed)

Squalane SCOT

- Application: Use for boiling point separations.
- USP Code: None
- Phase: Squalane
- Temp. Limits: 20 °C to 120 °C (isothermal or programmed)

Catalog Numbers

Common Dimensions of Popular Phases

Traditional Phases (by increasing phase polarity)

0.25 0.20	30 50	0.25	250	24218-U
	50			
	50	0.50	100	24133-U
0.25	100	0.50	125	24160-U
0.25	150	1.00	63	24155
0.32	30	4.00	20	24158
	15	0.10		28039-U
	30			28046-U
				28047-U
				28055-U
				24028
				24044
				24045-U
	0			24047
				25303
				25341-U
				25345-U
				28465-U
				28466-U
				28564-U
				28576-U
				28471-U
				28472-U
				28482-U
				28668-U*
	4			25003
				24277
				25439
				24156
	· · · · · · · · · · · · · · · · · · ·			28089-U
				28090-U
				28092-U
	4			28097-U
	30			28279-U
	30			24166
0.25	30	0.25	250	24034
0.32	15	0.25	320	24101-U
0.32	30	0.25	320	24048
0.53	30	0.50	265	25317
0.53	30	1.50	88	25305-U
0.53	30	5.00	27	25347
0.53	60	5.00	27	25351
0.18	20	1.00	45	28662-U
0.25	30	1.40	45	24255
0.25	60	1.40	45	24256
0.32	60	1.80	44	24251
0.53	30	3.00	44	25430
0.53	75	3.00	44	25432
0.53	30	3.00	44	25396
0.18	20	1.00	45	28463-U
0.25	30	1.50	42	24205-U
0.25	60	1.50	42	24154
	60	1.80	44	24217-U
0.32	00			
	0.10 0.25 0.32 0.25 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.53 0.53 0.53 0.53 0.10 0.18 0.25 0.25 0.32 0.53 0.25 0.32 0.53 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.32 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 <t< td=""><td>0.10150.25300.25600.32300.32300.32300.32600.53300.53300.53300.10100.110150.18200.25300.25300.25300.53300.53300.53300.53300.53140.32250.25300.53300.25300.25300.25300.25300.25300.25300.25300.25300.25300.25300.25300.5330<</td><td>0.10 15 0.10 0.25 30 0.25 0.25 60 0.25 0.32 30 0.25 0.32 30 0.25 0.32 30 0.25 0.32 30 0.25 0.32 30 1.00 0.32 60 1.00 0.53 30 3.00 0.53 30 5.00 0.10 10 0.10 0.10 10 0.10 0.10 15 0.10 0.18 20 0.36 0.25 30 0.25 0.25 30 0.25 0.32 25 0.10 0.18 20 0.36 0.25 30 0.25 0.32 30 0.25 0.32 30 0.25 0.53 30 0.25 0.25 30 0.25 0.25 30</td><td>0.10 15 0.10 250 0.25 30 0.25 250 0.25 30 0.25 250 0.32 30 0.25 320 0.32 30 0.25 320 0.32 30 0.25 320 0.32 60 1.00 80 0.32 60 1.00 80 0.53 30 1.50 88 0.53 30 5.00 27 0.10 0.10 250 0.10 250 0.10 15 0.10 250 0.18 250 0.18 20 0.36 125 0.25 250 0.25 30 0.25 250 0.25 250 0.25 30 0.25 250 0.25 250 0.25 30 0.25 250 0.25 250 </td></t<>	0.10150.25300.25600.32300.32300.32300.32600.53300.53300.53300.10100.110150.18200.25300.25300.25300.53300.53300.53300.53300.53140.32250.25300.53300.25300.25300.25300.25300.25300.25300.25300.25300.25300.25300.25300.5330<	0.10 15 0.10 0.25 30 0.25 0.25 60 0.25 0.32 30 0.25 0.32 30 0.25 0.32 30 0.25 0.32 30 0.25 0.32 30 1.00 0.32 60 1.00 0.53 30 3.00 0.53 30 5.00 0.10 10 0.10 0.10 10 0.10 0.10 15 0.10 0.18 20 0.36 0.25 30 0.25 0.25 30 0.25 0.32 25 0.10 0.18 20 0.36 0.25 30 0.25 0.32 30 0.25 0.32 30 0.25 0.53 30 0.25 0.25 30 0.25 0.25 30	0.10 15 0.10 250 0.25 30 0.25 250 0.25 30 0.25 250 0.32 30 0.25 320 0.32 30 0.25 320 0.32 30 0.25 320 0.32 60 1.00 80 0.32 60 1.00 80 0.53 30 1.50 88 0.53 30 5.00 27 0.10 0.10 250 0.10 250 0.10 15 0.10 250 0.18 250 0.18 20 0.36 125 0.25 250 0.25 30 0.25 250 0.25 250 0.25 30 0.25 250 0.25 250 0.25 30 0.25 250 0.25 250

Phase	I.D. (mm)	Length (m)	d _f (μm)	Beta Value	Cat. No.
VOCOL®	0.53	30	3.00	44	25320-U
VOCOL®	0.53	60	3.00	44	25381
/OCOL®	0.53	105	3.00	44	25358
SPB®-20	0.25	30	1.00	63	24196-U
Equity®-1701	0.10	15	0.10	250	28343-U
quity [®] -1701	0.25	30	0.25	250	28372-U
SPB®-608	0.25	30	0.25	250	24103-U
5PB®-608	0.53	30	0.50	265	25312
SPB®-50	0.25	30	0.25	250	24181
SPB [®] -1000	0.53	30	0.50	265	25445
lukol™	0.25	30	0.25	250	23443
lukol™		15	0.50	265	25326
	0.53				
lukol™	0.53	30	0.50	265	25327
Carbowax Amine	0.53	30	1.00	133	25353
megawax [®] 100	0.10	15	0.10	250	23399-U
megawax [®] 250	0.25	30	0.25	250	24136
)megawax [®] 320	0.32	30	0.25	320	24152
UPELCOWAX® 10	0.10	15	0.10	250	24343
UPELCOWAX® 10	0.25	30	0.25	250	24079
SUPELCOWAX® 10	0.25	60	0.25	250	24081
SUPELCOWAX® 10	0.25	30	0.50	125	24284
SUPELCOWAX® 10	0.32	30	0.25	320	24080-U
SUPELCOWAX® 10	0.32	60	0.25	320	24082
SUPELCOWAX® 10	0.32	30	0.50	160	24084
SUPELCOWAX® 10	0.32	60	0.50	160	24085-U
UPELCOWAX® 10	0.32	30	1.00	80	24211
SUPELCOWAX® 10	0.32	60	1.00	80	24212
SUPELCOWAX® 10	0.53	30	0.50	265	25325
SUPELCOWAX® 10	0.53	30	1.00	133	25301-U
SUPELCOWAX® 10	0.53	60	1.00	133	25391
SUPELCOWAX® 10	0.53	30	2.00	63	25375-U
SUPELCOWAX 10	0.53	60	2.00	53	25375-0
SLB®-IL59	0.10	15	0.08	313	28880-U
SLB®-IL59	0.25	30	0.20	313	28891-U
SLB®-IL60i	0.25	30	0.20	313	29505-U
SP®-2330	0.25	30	0.20	313	24019
SLB®-IL76	0.10	15	0.08	313	28909-U
SLB®-IL76	0.25	30	0.20	313	28913-U
SP®-2331	0.25	60	0.20	313	24104-U
SP®-2331	0.32	60	0.20	400	24105-U
SP®-2380	0.25	30	0.20	313	24110-U
SP®-2380	0.25	60	0.20	313	24111
SP®-2380	0.25	100	0.20	313	24317
SP®-2380	0.32	30	0.20	400	24116-U
SP®-2560	0.18	75	0.14	321	23348-U
SP®-2560	0.25	100	0.20	313	24056
SP®-2560	0.25	100	0.20	313	23362-U**
SP®-2340	0.25	60	0.20	313	24023
LB®-IL82	0.10	15	0.08	313	29477-U
SLB®-IL82	0.25	30	0.20	313	29479-U
CEP	0.25	60	0.44	142	24153
SLB®-IL100	0.10	15	0.08	313	28882-U
LB®-IL100	0.18	20	0.14	313	28882-0 28883-U
		30	0.20	313	
LB®-IL100	0.25				28884-U
SLB®-IL100	0.25	60	0.20	313	28886-U
SLB®-IL100	0.32	30	0.26	313	28887-U
LB®-IL100	0.32	60	0.26	313	28888-U
SLB®-IL111i	0.10	15	0.08	313	28925-U
SLB®-IL111i	0.25	30	0.20	313	28927-U

*Plus an integrated 2 m x 0.53 mm I.D. guard.

Chiral Phases

Phase	I.D. (mm)	Length (m)	d _f (μm)	Beta Value	Cat. No.
CHIRALDEX [®] G-TA	0.25	30	0.12	500	73033AST
CHIRALDEX [®] G-DP	0.25	30	0.12	500	78033AST
CHIRALDEX [®] B-DM	0.25	30	0.12	500	77023AST
CHIRALDEX® B-PM	0.25	30	0.12	500	76023AST
CHIRALDEX [®] B-DA	0.25	30	0.12	500	72023AST
CHIRALDEX [®] B-PH	0.25	30	0.12	500	71023AST
β-DEX™ 120	0.25	30	0.25	250	24304
β-DEX™ 225	0.25	30	0.25	250	24348
β-DEX™ 325	0.25	30	0.25	250	24308

Intuvo Columns

Phase	I.D. (mm)	Length (m)	d _f (μm)	Beta Value	Cat. No.
Supelcowax [®] 10	0.25	30	0.25	250	24079INT
Supelcowax [®] 10	0.32	30	0.5	160	24084INT
Supelcowax [®] 10	0.32	30	0.25	320	24080UINT
Supelcowax® 10	0.32	60	0.5	160	24085UINT
SP [®] -2340	0.25	60	0.2	313	24023INT
SPB®-1	0.25	30	0.25	250	24028INT
SPB [®] -5	0.25	30	0.25	250	24034INT
SPB [®] -5	0.32	30	0.25	320	24048INT
SPB [®] -20	0.25	30	0.25	250	24086INT
SP®-2380	0.25	60	0.2	313	24111INT
Omegawax®	0.25	30	0.25	250	24136INT
Omegawax®	0.32	30	0.25	320	24152INT
VOCOL [®]	0.25	60	1.5	42	24154INT
VOCOL [®]	0.32	60	1.8	44	24217UINT
SPB®-624	0.32	60	1.8	44	24251INT
SPB®-624	0.25	30	1.4	45	24255INT
SPB®-624	0.25	60	1.4	45	24256INT
SPB®-624	0.32	30	1.8	44	23323UINT
β-DEX™ 120	0.25	30	0.25	250	24304INT
SP®-2331	0.25	60	0.2	313	24104UINT
SP®-2331	0.32	60	0.2	400	24105UINT
SP®-2380	0.25	30	0.2	313	24110UINT
SPB®-Octyl	0.25	30	0.25	250	24218UINT
Equity®-1	0.25	30	0.25	250	28046UINT
Equity [®] -5	0.25	30	0.25	250	28089UINT
Equity [®] -1701	0.32	30	0.25	320	28382UINT
SLB [®] -PAHms	0.25	30	0.25	250	28340UINT
SLB [®] -5ms	0.25	15	0.25	250	28469UINT
SLB [®] -5ms	0.25	30	0.25	250	28471UINT
SLB [®] -5ms	0.25	60	0.25	250	28472UINT
SLB [®] -5ms	0.25	30	0.5	125	28473UINT
SLB [®] -5ms	0.25	30	1	63	28476UINT
SLB [®] -5ms	0.32	30	0.25	320	28482UINT
SLB [®] -5ms	0.18	20	0.18	250	28564UINT
SLB®-IL60	0.25	30	0.2	313	29505UINT
Watercol [™] 1910	0.25	30	0.2	313	29711UINT
Watercol [™] 1910	0.32	30	0.26	313	29714UINT
SLB [®] -1ms	0.25	30	0.25	250	29731UINT
SLB®-ILPAH	0.18	20	0.05	900	29799UINT
SLB®-35ms	0.25	30	0.5	125	29806UINT
SLB®-IL60i	0.25	30	0.2	313	29832UINT
SLB®-IL60i	0.25	60	0.2	313	29833UINT

PLOT Columns

Phase	I.D. (mm)	Length (m)	Cat. No.
Carboxen®-1010 PLOT	0.53	30	25467
Carboxen®-1006 PLOT	0.53	30	25461
Supel-Q [™] PLOT	0.53	30	25462

SCOT Columns, 50 ft x 1/32" O.D. x 0.02" I.D.

Phase	Cat. No.		
Bentone [®] 34/DNP	23813-U		
TCEP	23829-U		
BMEA	23818-U		
Squalane	23819-U		

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (812)99-46-04 Барнаул (3852)73-04-60 Белгорециенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владикавказ (8672)28-90-48 Волоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Ижевск (3412)26-03-58 Иваново (4932)77-34-06 Иркутск (395)279-98-46 Казань (843)206-01-48 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (832)68-02-04 Коломна (4966)23-41-49 Кострома (4966)23-41-49 Кострома (4966)23-41-49 Краснорарс (391)204-63-61 Курск (4712)77-13-04 Курска (4742)52-20-81

Киргизия (996)312-96-26-47

Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Россия (495)268-04-70

Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Магнитогорск (3519)55-03-13 Москва (495)268-04-70

Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12

Мурманск (8152)59-64-93

Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12

Новосибирск (383)227-86-73 Ноябрьск (3496)41-32-12 Омск (3812)21-46-40 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Саранск (8342)22-96-24 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастопоть (8692)22-31-93 Симферопоть (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сыктывкар (8212)25-95-17 Сургуг (3462)77-98-35 Тамбов (4752)50-40-97

Казахстан (772)734-952-31

Тверь (4822)63-31-35 Тольяти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Улан-Удэ (3012)59-97-51 Улан-Удэ (3012)59-97-51 Улан-Удэ (3012)59-97-51 Улан-Удэ (3012)29-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-05-804 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Яроспавль (4852)69-52-93

https://supelco.nt-rt.ru || suz@nt-rt.ru